Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Ann N Y Acad Sci ; 1521(1): 46-66, 2023 03.
Article in English | MEDLINE | ID: covidwho-2228475

ABSTRACT

Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , SARS-CoV-2 , Positive-Strand RNA Viruses , Antiviral Agents/therapeutic use , Pandemics , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/drug therapy
2.
Am J Infect Control ; 50(8): 890-897, 2022 08.
Article in English | MEDLINE | ID: covidwho-2000216

ABSTRACT

BACKGROUND: SARS-CoV-2 emerged in 2019 and resulted in a pandemic causing millions of infections worldwide. Gold-standard for SARS-CoV-2 detection uses quantitative RT-qPCR on respiratory secretions to detect viral RNA (vRNA). Acquiring these samples is invasive, can be painful for those with xerostomia and other health conditions, and sample quality can vary greatly. Frequently only symptomatic individuals are tested even though asymptomatic individuals can have comparable viral loads and efficiently transmit virus. METHODS: We utilized a non-invasive approach to detect SARS-CoV-2 in individuals, using polyvinyl alcohol (PVA) strips embedded in KN95 masks. PVA strips were tested for SARS-CoV-2 vRNA via qRT-PCR and infectious virus. RESULTS: We show efficient recovery of vRNA and infectious virus from virus-spiked PVA with detection limits comparable to nasal swab samples. In infected individuals, we detect both human and SARS-CoV-2 RNA on PVA strips, however, these levels are not correlated with length of time mask was worn, number of times coughed or sneezed, or level of virus in nasal swab samples. We successfully cultured and deep-sequenced PVA-associated virus. CONCLUSIONS: These results demonstrate the feasibility of using PVA-embedded masks as a non-invasive platform for detecting SARS-CoV-2 in exhaled air in COVID-positive individuals regardless of symptom status.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics
3.
Adv Virol ; 2022: 1378482, 2022.
Article in English | MEDLINE | ID: covidwho-1986427

ABSTRACT

SARS-CoV-2 emerged in 2019 and rapidly surged into a global pandemic. The rates of concurrent infection with other respiratory pathogens and the effects of possible coinfections on the severity of COVID-19 cases and the length of viral infection are not well defined. In this retrospective study, nasopharyngeal swab samples collected in Colorado between March 2020 and May 2021 from SARS-CoV-2 PCR-positive individuals were tested for a panel of 21 additional respiratory pathogens, including 17 viral and 4 bacterial pathogens. We detected significant positive correlations between levels of SARS-CoV-2 RNA and infectious virus titers for both cohorts, as well as a positive correlation between viral RNA levels and disease severity scores for one cohort. We hypothesized that severe COVID-19 cases and longer SARS-CoV-2 infections may be associated with concurrent respiratory infections. Only one individual exhibited evidence of a concurrent infection- SARS -CoV-2 and human rhinovirus/enterovirus- leading us to conclude that viral respiratory coinfections were uncommon during this time and thus not responsible for the variations in disease severity and infection duration observed in the two cohorts examined. Mask wearing and other public health measures were imposed in Colorado during the time of collection and likely contributed to low rates of coinfection.

4.
Infect Dis Model ; 7(3): 463-472, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1936497

ABSTRACT

The COVID-19 pandemic severely impacted long-term care facilities resulting in the death of approximately 8% of residents nationwide as of March 2021. As COVID-19 case rates declined and state and county restrictions were lifted in spring 2021, facility managers, local and state health agencies were challenged with defining their own policies moving forward to appropriately mitigate disease transmission. The continued emergence of variants of concern and variable vaccine uptake across facilities highlighted the need for a readily available tool that can be employed at the facility-level to determine best practices for mitigation and ensure resident and staff safety. To assist leadership in determining the impact of various infection surveillance and response strategies, we developed an agent-based model and an online dashboard interface that simulates COVID-19 infection within congregate care settings under various mitigation measures. This dashboard quantifies the continued risk for COVID-19 infections within a facility given a designated testing schedule and vaccine requirements. Key findings were that choice of COVID-19 diagnostic (ex. nasal swab qRT-PCR vs rapid antigen) and testing cadence has less impact on attack rate and staff workdays missed than does vaccination rates among staff and residents. Specifically, low vaccine uptake among staff at long-term care facilities puts staff and residents at risk of ongoing COVID-19 outbreaks. Here we present our model and dashboard as an exemplar of a tool for state public health officials and facility directors to gain insights from an infectious disease model that can directly inform policy decisions in the midst of a pandemic.

5.
mSphere ; 7(4): e0016922, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1927638

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 and has resulted in millions of deaths worldwide. Certain populations are at higher risk for infection, especially staff and residents at long-term care facilities (LTCF), due to the congregant living setting and high proportions of residents with many comorbidities. Prior to vaccine availability, these populations represented large fractions of total coronavirus disease 2019 (COVID-19) cases and deaths in the United States. Due to the high-risk setting and outbreak potential, staff and residents were among the first groups to be vaccinated. To define the impact of prior infection on the response to vaccination, we measured antibody responses in a cohort of staff members at an LTCF, many of whom were previously infected by SARS-CoV-2. We found that neutralizing, receptor-binding domain (RBD)-binding, and nucleoprotein (NP)-binding antibody levels were significantly higher after the full vaccination course in individuals that were previously infected and that NP antibody levels could discriminate individuals with prior infection from vaccinated individuals. While an anticipated antibody titer increase was observed after a vaccine booster dose in naive individuals, a boost response was not observed in individuals with previous COVID-19 infection. We observed a strong relationship between neutralizing antibodies and RBD-binding antibodies postvaccination across all groups, whereas no relationship was observed between NP-binding and neutralizing antibodies. One individual with high levels of neutralizing and binding antibodies experienced a breakthrough infection (prior to the introduction of Omicron), demonstrating that the presence of antibodies is not always sufficient for complete protection against infection. These results highlight that a history of COVID-19 exposure significantly increases SARS-CoV-2 antibody responses following vaccination. IMPORTANCE Long-term care facilities (LTCFs) have been disproportionately impacted by COVID-19, due to their communal nature, the high-risk profile of residents, and the vulnerability of residents to respiratory pathogens. In this study, we analyzed the role of prior natural immunity to SARS-CoV-2 in postvaccination antibody responses. The LTCF in our cohort experienced a large outbreak, with almost 40% of staff members becoming infected. We found that individuals that were infected prior to vaccination had higher levels of neutralizing and binding antibodies postvaccination. Importantly, the second vaccine dose significantly boosted antibody levels in those that were immunologically naive prior to vaccination, but not in those that had prior immunity. Regardless of the prevaccination immune status, the levels of binding and neutralizing antibodies were highly correlated. The presence of NP-binding antibodies could be used to identify individuals that were previously infected when prevaccination immune status was not known. Our results reveal that vaccination antibody responses differ depending on prior natural immunity.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , Humans , Long-Term Care , SARS-CoV-2
6.
Anal Chem ; 94(11): 4712-4719, 2022 03 22.
Article in English | MEDLINE | ID: covidwho-1735180

ABSTRACT

Point-of-care (POC) methods currently available for detecting SARS-CoV-2 infections still lack accuracy. Here, we report the development of a highly sensitive electrochemical immunoassay capable of quantitatively detecting the presence of the SARS-CoV-2 virus in patient nasopharyngeal samples using stencil-printed carbon electrodes (SPCEs) functionalized with capture antibodies targeting the SARS-CoV-2 nucleocapsid protein (N protein). Samples are added to the electrode surface, followed by horseradish peroxidase (HRP)-conjugated detection antibodies also targeting the SARS-CoV-2 N protein. The concentration of the virus in samples is quantified using chronoamperometry in the presence of 3,3'5,5'-tetramethylbenzidine. Limits of detection equivalent to less than 50 plaque forming units/mL (PFU/mL) were determined with virus sample volumes of 20 µL. No cross-reactivity was detected with the influenza virus and other coronavirus N proteins. Patient nasopharyngeal samples were tested as part of a proof-of-concept clinical study where samples were also tested using the gold-standard real-time quantitative polymerase chain reaction (RT-qPCR) method. Preliminary results from a data set of 22 samples demonstrated a clinical specificity of 100% (n = 9 negative samples according to RT-qPCR) and a clinical sensitivity of 70% for samples with RT-PCR cycle threshold (Ct) values under 30 (n = 10) and 100% for samples with Ct values under 25 (n = 5), which complies with the World Health Organization (WHO) criteria for POC COVID-19 diagnostic tests. Our functionalized SPCEs were also validated against standard plaque assays, and very good agreement was found between both methods (R2 = 0.9993, n = 6), suggesting that our assay could be used to assess patient infectivity. The assay currently takes 70 min from sampling to results.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Immunoassay/methods , Nucleocapsid Proteins , Sensitivity and Specificity
7.
Microbiol Spectr ; 9(3): e0100321, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1593461

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 and has become a major global pathogen in an astonishingly short period of time. The emergence of SARS-CoV-2 has been notable due to its impacts on residents in long-term care facilities (LTCFs). LTCF residents tend to possess several risk factors for severe outcomes of SARS-CoV-2 infection, including advanced age and the presence of comorbidities. Indeed, residents of LTCFs represent approximately 40% of SARS-CoV-2 deaths in the United States. Few studies have focused on the prevalence and transmission dynamics of SARS-CoV-2 among LTCF staff during the early months of the pandemic, prior to mandated surveillance testing. To assess the prevalence and incidence of SARS-CoV-2 among LTCF staff, characterize the extent of asymptomatic infections, and investigate the genomic epidemiology of the virus within these settings, we sampled staff for 8 to 11 weeks at six LTCFs with nasopharyngeal swabs from March through June of 2020. We determined the presence and levels of viral RNA and infectious virus and sequenced 54 nearly complete genomes. Our data revealed that over 50% of infections were asymptomatic/mildly symptomatic and that there was a strongly significant relationship between viral RNA (vRNA) and infectious virus, prolonged infections, and persistent vRNA (4+ weeks) in a subset of individuals, and declining incidence over time. Our data suggest that asymptomatic SARS-CoV-2-infected LTCF staff contributed to virus persistence and transmission within the workplace during the early pandemic period. Genetic epidemiology data generated from samples collected during this period support that SARS-CoV-2 was commonly spread between staff within an LTCF and that multiple-introduction events were less common. IMPORTANCE Our work comprises unique data on the characteristics of SARS-CoV-2 dynamics among staff working at LTCFs in the early months of the SARS-CoV-2 pandemic prior to mandated staff surveillance testing. During this time period, LTCF residents were largely sheltering-in-place. Given that staff were able to leave and return daily and could therefore be a continued source of imported or exported infection, we performed weekly SARS-CoV-2 PCR on nasal swab samples collected from this population. There are limited data from the early months of the pandemic comprising longitudinal surveillance of staff at LTCFs. Our data reveal the surprisingly high level of asymptomatic/presymptomatic infections within this cohort during the early months of the pandemic and show genetic epidemiological analyses that add novel insights into both the origin and transmission of SARS-CoV-2 within LTCFs.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/epidemiology , Hospitals , Long-Term Care , SARS-CoV-2/isolation & purification , Sequence Analysis/methods , Adolescent , Adult , Aged , Asymptomatic Infections/epidemiology , COVID-19/virology , Cohort Studies , Diagnostic Tests, Routine , Epidemiological Monitoring , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Pandemics , Phylogeny , Prevalence , RNA, Viral , SARS-CoV-2/classification , SARS-CoV-2/genetics , Specimen Handling , Young Adult
8.
Microbiol Spectr ; 9(1): e0022421, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1319384

ABSTRACT

SARS-CoV-2 has had a disproportionate impact on nonhospital health care settings, such as long-term-care facilities (LTCFs). The communal nature of these facilities, paired with the high-risk profile of residents, has resulted in thousands of infections and deaths and a high case fatality rate. To detect presymptomatic infections and identify infected workers, we performed weekly surveillance testing of staff at two LTCFs, which revealed a large outbreak at one of the sites. We collected serum from staff members throughout the study and evaluated it for binding and neutralization to measure seroprevalence, seroconversion, and type and functionality of antibodies. At the site with very few incident infections, we detected that over 40% of the staff had preexisting SARS-CoV-2 neutralizing antibodies, suggesting prior exposure. At the outbreak site, we saw rapid seroconversion following infection. Neutralizing antibody levels were stable for many weeks following infection, suggesting a durable, long-lived response. Receptor-binding domain antibodies and neutralizing antibodies were strongly correlated. The site with high seroprevalence among staff had two unique introductions of SARS-CoV-2 into the facility through seronegative infected staff during the period of study, but these did not result in workplace spread or outbreaks. Together, our results suggest that a high seroprevalence rate among staff can contribute to immunity within a workplace and protect against subsequent infection and spread within a facility. IMPORTANCE Long-term care facilities (LTCFs) have been disproportionately impacted by COVID-19 due to their communal nature and high-risk profile of residents. LTCF staff have the ability to introduce SARS-CoV-2 into the facility, where it can spread, causing outbreaks. We tested staff weekly at two LTCFs and collected blood throughout the study to measure SARS-CoV-2 antibodies. One site had a large outbreak and infected individuals rapidly generated antibodies after infection. At the other site, almost half the staff already had antibodies, suggesting prior infection. The majority of these antibodies bind to the receptor-binding domain of the SARS-CoV-2 spike protein and are potently neutralizing and stable for many months. The non-outbreak site had two unique introductions of SARS-CoV-2 into the facility, but these did not result in workplace spread or outbreaks. Our results reveal that high seroprevalence among staff can contribute to immunity and protect against subsequent infection and spread within a facility.


Subject(s)
Antibody Formation , COVID-19/epidemiology , COVID-19/immunology , Disease Outbreaks , Long-Term Care , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Asymptomatic Infections/epidemiology , Binding Sites, Antibody , COVID-19 Testing , Humans , Immunologic Surveillance , RNA, Viral , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology
9.
BMC Infect Dis ; 21(1): 677, 2021 Jul 13.
Article in English | MEDLINE | ID: covidwho-1309905

ABSTRACT

BACKGROUND: SARS-CoV-2 has swept across the globe, causing millions of deaths worldwide. Though most survive, many experience symptoms of COVID-19 for months after acute infection. Successful prevention and treatment of acute COVID-19 infection and its associated sequelae is dependent on in-depth knowledge of viral pathology across the spectrum of patient phenotypes and physiologic responses. Longitudinal biobanking provides a valuable resource of clinically integrated, easily accessed, and quality-controlled samples for researchers to study differential multi-organ system responses to SARS-CoV-2 infection, post-acute sequelae of COVID-19 (PASC), and vaccination. METHODS: Adults with a history of a positive SARS-CoV-2 nasopharyngeal PCR are actively recruited from the community or hospital settings to enroll in the Northern Colorado SARS-CoV-2 Biorepository (NoCo-COBIO). Blood, saliva, stool, nasopharyngeal specimens, and extensive clinical and demographic data are collected at 4 time points over 6 months. Patients are assessed for PASC during longitudinal follow-up by physician led symptom questionnaires and physical exams. This clinical trial registration is NCT04603677 . RESULTS: We have enrolled and collected samples from 119 adults since July 2020, with 66% follow-up rate. Forty-nine percent of participants assessed with a symptom surveillance questionnaire (N = 37 of 75) had PASC at any time during follow-up (up to 8 months post infection). Ninety-three percent of hospitalized participants developed PASC, while 23% of those not requiring hospitalization developed PASC. At 90-174 days post SARS-CoV-2 diagnosis, 67% of all participants had persistent symptoms (N = 37 of 55), and 85% percent of participants who required hospitalization during initial infection (N = 20) still had symptoms. The most common symptoms reported after 15 days of infection were fatigue, loss of smell, loss of taste, exercise intolerance, and cognitive dysfunction. CONCLUSIONS: Patients who were hospitalized for COVID-19 were significantly more likely to have PASC than those not requiring hospitalization, however 23% of patients who were not hospitalized also developed PASC. This patient-matched, multi-matrix, longitudinal biorepository from COVID-19 survivors with and without PASC will allow for current and future research to better understand the pathophysiology of disease and to identify targeted interventions to reduce risk for PASC. Registered 27 October 2020 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04603677 .


Subject(s)
Biological Specimen Banks , COVID-19 Testing/methods , COVID-19/complications , SARS-CoV-2/genetics , Survivors , Adult , Aged , COVID-19/blood , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Colorado/epidemiology , Disease Progression , Female , Follow-Up Studies , Hospitalization , Humans , Longitudinal Studies , Male , Middle Aged , Specimen Handling , Young Adult , Post-Acute COVID-19 Syndrome
10.
PLoS Pathog ; 17(5): e1009585, 2021 05.
Article in English | MEDLINE | ID: covidwho-1234597

ABSTRACT

Coronavirus disease-19 (COVID-19) emerged in late 2019 in China and rapidly became pandemic. As with other coronaviruses, a preponderance of evidence suggests the virus originated in horseshoe bats (Rhinolophus spp.) and may have infected an intermediate host prior to spillover into humans. A significant concern is that SARS-CoV-2 could become established in secondary reservoir hosts outside of Asia. To assess this potential, we challenged deer mice (Peromyscus maniculatus) with SARS-CoV-2 and found robust virus replication in the upper respiratory tract, lungs and intestines, with detectable viral RNA for up to 21 days in oral swabs and 6 days in lungs. Virus entry into the brain also occurred, likely via gustatory-olfactory-trigeminal pathway with eventual compromise to the blood-brain barrier. Despite this, no conspicuous signs of disease were observed, and no deer mice succumbed to infection. Expression of several innate immune response genes were elevated in the lungs, including IFNα, IFNß, Cxcl10, Oas2, Tbk1 and Pycard. Elevated CD4 and CD8ß expression in the lungs was concomitant with Tbx21, IFNγ and IL-21 expression, suggesting a type I inflammatory immune response. Contact transmission occurred from infected to naive deer mice through two passages, showing sustained natural transmission and localization into the olfactory bulb, recapitulating human neuropathology. In the second deer mouse passage, an insertion of 4 amino acids occurred to fixation in the N-terminal domain of the spike protein that is predicted to form a solvent-accessible loop. Subsequent examination of the source virus from BEI Resources determined the mutation was present at very low levels, demonstrating potent purifying selection for the insert during in vivo passage. Collectively, this work has determined that deer mice are a suitable animal model for the study of SARS-CoV-2 respiratory disease and neuropathogenesis, and that they have the potential to serve as secondary reservoir hosts in North America.


Subject(s)
COVID-19/physiopathology , COVID-19/transmission , Peromyscus/virology , Rodent Diseases/transmission , Animals , Brain/pathology , Brain/virology , COVID-19/pathology , Disease Models, Animal , Disease Reservoirs , Disease Susceptibility , Female , Male , Rodent Diseases/pathology , Rodent Diseases/virology , Spike Glycoprotein, Coronavirus/genetics , Virus Replication
11.
bioRxiv ; 2020 Aug 07.
Article in English | MEDLINE | ID: covidwho-721086

ABSTRACT

Coronavirus disease-19 (COVID-19) emerged in November, 2019 in China and rapidly became pandemic. As with other coronaviruses, a preponderance of evidence suggests the virus originated in horseshoe bats (Rhinolophus spp.) and likely underwent a recombination event in an intermediate host prior to entry into human populations. A significant concern is that SARS-CoV-2 could become established in secondary reservoir hosts outside of Asia. To assess this potential, we challenged deer mice (Peromyscus maniculatus) with SARS-CoV-2 and found robust virus replication in the upper respiratory tract, lungs and intestines, with detectable viral RNA for up to 21 days in oral swabs and 14 days in lungs. Virus entry into the brain also occurred, likely via gustatory-olfactory-trigeminal pathway with eventual compromise to the blood brain barrier. Despite this, no conspicuous signs of disease were observed and no deer mice succumbed to infection. Expression of several innate immune response genes were elevated in the lungs, notably IFNα, Cxcl10, Oas2, Tbk1 and Pycard. Elevated CD4 and CD8ß expression in the lungs was concomitant with Tbx21, IFNγ and IL-21 expression, suggesting a type I inflammatory immune response. Contact transmission occurred from infected to naive deer mice through two passages, showing sustained natural transmission. In the second deer mouse passage, an insertion of 4 amino acids occurred to fixation in the N-terminal domain of the spike protein that is predicted to form a solvent-accessible loop. Subsequent examination of the source virus from BEI Resources indicated the mutation was present at very low levels, demonstrating potent purifying selection for the insert during in vivo passage. Collectively, this work has determined that deer mice are a suitable animal model for the study of SARS-CoV-2 pathogenesis, and that they have the potential to serve as secondary reservoir hosts that could lead to periodic outbreaks of COVID-19 in North America.

SELECTION OF CITATIONS
SEARCH DETAIL